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We carried out a theoretical investigation of  the nonlinear mechanism o/nonper iodic  motion in a saturated 

porous medium under the prolonged action of  elastic waves. Within the f ramework of  a generalization o / t h e  

F r e n k e l - B i o t - N i k o l a e v s k i i  model, we suggest a technique/or  constructing a slow (background) solution 

that takes into account the accumulating effect of  fas t  nonlinear oscillations. 

Numerous experimental data (for example, [ 1-3 ]), show that prolonged exposure of rocks saturated with 
fluid to seismoacoustic vibrations leads to the accumulation of nonperiodic changes in them (acoustic flow of the 

fluid, temperature rise, accumulation of deformations, etc.). A theoretical description of this nonlinear effect and 

quant i ta t ive  est imates  can be made within the framework of a general izat ion [4, 5] of the classical 

Frenkel-Biot-Nikolaevskii model [6] of the propagation of waves in saturated porous media. The use of the 

method of multiscale expansions [7, 8 ] allows one, in the process of asymptotic investigation, to isolate different 
types of motions: slow (background) averaged macromotion and fast (oscillating) micromotion. Naturally, there is 

interaction between these two types: the propagation of fast (e.g., elastic) waves depends in many respects on the 

parameters of the background motion and, on the other hand, the averaging of nonlinear oscillations leads to the 

accumulation of changes in the parameters of the background motion. In the present work we propose a method 
for constructing a background solution allowing one to evaluate the accumulating effect of nonlinear elastic 

(longitudinal of the 1st and 2nd kinds and transverse) waves. 

We will consider a viscoelastic deformable porous medium consisting of an elastic skeleton, a viscous fluid 
bound by the skeleton surface, and a viscous fluid (weakly compressible liquid or perfect gas) phase. 

Note that in contrast to the traditional investigation of a porous fluid for porous media, when Pi] = - I ~ i j ,  

here we take shear stresses in the fluid into account: 
J 

Pij = - l~i j  q" vf [Ovfi/Ox j + Ovfj/Ox i - (2/3) (dvrtc/Oxk) 6iyl. 

In a traditional linear consideration the corresponding small terms of equations are usually neglected; 

therefore, the problem with allowance for the tensor of viscous stresses in a nonlinear statement was not considered 

earlier. However, for analysis of the dynamics of porous media over long time periods, it is necessary to take into 
account the accumulated contribution of weak nonlinear and dispersion effects. 

The porous medium skeleton and the bound fluid form an effective viscoelastic solid phase that exhibits 

the elastic properties of the skeleton and the viscous properties of the fluid. In this case the skeleton and bound 

fluid have the same velocities, temperatures, and pressures. 

We introduce into consideration the tensor of effective stresses: 

o q  = (1 - ( l  - ~ )  m )  (o~  - Pij)  , 
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which is interpreted as the difference between the true phase stresses in the solid and fluid phases. 

With allowance for viscoelastic properties, the rheological relation for the solid phase can be represented 

a s  

a i / =  Kekk~i /  + 2G (e  6 - ekt?30/3 ) + f l ~ K l x 3 i / -  ~osKTs~i/ + 

+ c tmv  a [dVs i /Sx  j + OVsj/Ox i - (2/3)(OVsj,/Oxk)~ii].  

Next,  we formulate a system of determining equations in dimensionless form. We introduce the following 

dimensionless variables and parameters: 

x = x / x  o ,  t ' = t / t  o , 

r '  = r / o  o , = jOK o , 

F i 

e = E l y ' ,  v = v l ( K o t o ) ,  

' 2 
R = R O o / v  , X' = XOo t o / (VoPo) ,  

t o = p o x / V f ,  

u = u / x  O, p '  = p / p o ,  P'  = P / K o ,  a 

~o'=r K ' = K / K 0 ,  G '  = G / K  O ,  

' 2 2  
;t =  Ooto/ (XoV o p o )  , 

t 

k = k x  o ,  w =cot{}, 

v 0 = ( K s / p 0 )  1 / 2  . 

= o / K  0 , 

v = v / v  0 , 

s 

C = C O o / v  2 ,  

where x o = r o t s ,  

Estimates of the values of the dimensionless parameters can be obtained using characteristic values of the 
c o n s t a n t s  of rocks [6]:  K o - 1 0 8 - 1 0 9  Pa; 0 0 - 1 0 2 - 1 0 3  K; p o ~ 1 0 3  kg/m3;  f l - 1 0 - 1 ~  -9  p a - l ;  
~o - 1 0 - 6 - 1 0  -3 K-l;  C - 103 J/(kg-K); ~ - 100 W/(m-K),  v - 1 0 - 5 - 1 0  -3 Pa.sec; x - 1 0 - 1 5 - 1 0  - ]2  m 2. At these 
parameter  values  we have: t o - 1 0 - 9 - 1 0  -6  sec,  v o - 1 0 3  m / s e c ,  x o - 1 0 - 6 - 1 0  -3 m, v ' - 1 0 - 8 - 1 0  -5, 
fl' - 10-2-100 ,  p' - 10-3-100 ,  C' - 100, 2' - 1 0 - 7 - 1 0  -4. 

The  dimensional analysis carried out made it possible to isolate the small dimensionless parameter  

e = (V'f) 1 / 2  m ( v f / ( K o t o ) )  1 / 2  ~ v f / ( K o P o i r  1 / 2  , 

which represents a combination of the characteristic values of the viscosity of the fluid and the elasticity modulus, 

density, and permeability of the medium. 

In what follows the primes will be omitted. Proceeding from the estimates given above for the dimensionless 

parameters,  we fur ther  assume that v - e2Vand ,1 = e2~. ~. Omitting the tildes, we write the system of mass, momentum, 

and energy conservation equations as (i, j = 1, 2, 3) 

O ((1 - a )  m p f ) / O t  + V x ((1 - ct) rnpfvf) = 0 ; 

S ( a m p a  + (1 - r n ) p s ) / O t  + V x ( ( s t r i P s  q- ( l  -- m)Ps) Vs) = 0 ; 

2 
(1 - a)  m p f  I S ~ S t  + (vf, Vx) ] yfi - (1 - a )  m S P i j / S x  j -t- m (1 - a )  2 (vf i  - Vsi ) = 0 ; 

(amp~ + (1 - m)Ps)  l S / O t  + (v s, Vx) l Vsi - O v i / / S x  j - (1 - (1 - a )  m )  S l ' i y /Sxy  - 

2 a ) 2  
-- m (1 - -  (Vii -- Vsi ) = 0 ; SUi /Ot  -- Vsi = 0 ; 

(1) 

S o i j / S t  = K t ~ i j S e k k / S t  + 2GO (ei] - e ~ k c ) i j / 3 ) / S t  + f l sC) i j gSp /S t  - 

2 
- ~OsC)ijKSTs/St + e c tmvad (OVsi/dxy + SVsy/Sx  i - 



- (2 /3 )  (OVs~lOxk) <~#)lOt ; OeqlOt - (OvsilOx i + Ovs / lOxi ) /2  = 0 ; 

m (1 - a )  p f  [ 0 / 0 t  + (vf, Vx) ] Ef = m (I - a )  PijOvfi/Oxj + 

+ m 2 ( 1  a)  2 I v f -  Vs 12 - - X (Tf - Ts) + e2Vx (m  (1 - a)  2fVx) Tf ; 

(1 - m) p s [O/Ot + (Vs, Vx)] E s + a m p a  [OlOt + (v s, Vx) I E a = 

= (aij + (I - (I -- a) m) eiy) Ovsi/Ox] + X (Tf - Ts) + 

+ e2Vx ((I - m) ,,I s + arrtAa) V x T  s . 

The  rheological and thermodynamic relations have the form 

Pliq = Pl iq0 ( l  + flliq (P  --  P0)  - -  tPliq (Tl iq  - TliqO)) ; P g  = p / ( R T g )  ; 

= (Okk/3  -- (70) -- ~o a (T s - Ts0)) ; Pa Pliq0 (1 -- fla s 

Ps PsO(1 fls s = _ ( o k k / 3  -- % )  -- ~o s (Ts - Tso)) ; 

Pi/ = - P~i/ + E2vr [Ovfi /ox: + o v f / O x i  - (2/3) (Ovfl,/Oxk) 8i / l  ; 

Vf = (Vfl , Vf2 , Vf3 ) ; 

V s = (Vsl,Vs2,Vs3) ; 

(2) 

PliqdEliq = PllqCliqdTliq + (P/Pliq) dPliq - ~~ ; Eg = CgTg ; 

$ $ 
p~ae~ - p~c~aT~ + a~de~j + ~,~T~a~k/3 ; 

P a d E  a P a C a d T  s s s = _ crkk/(3Pa ) dPa + r  

crijS = (7(/ /(  1 _ (1 - ct) m)  + Piy 

0)-(2) in its main part represents a hyperbolic, closed system of equations in unknown tensor System 

functions trij and e/y, vector functions u, vs, and vr, and scalar functions m, p, Ts, and Tf. 

It should be noted that consideration of the hyperbolic (in its main portion) system of equations and the 

selection of the form for the asymptotic solution of this system predetermine the maximum number  of real roots of 

the dispersion equation that correspond to the frequencies of the waves in the model considered. 

In what follows we shall limit ourselves to consideration of the Cauchy problem with the initial data 

0 0 0 0 
ui l t=  O =  u? ,  Vsilt= O= vsi,  vf i l t= O= vfi , rnlt=O = m , P l t = o =  P , 

0 0 0 i 0 
T f l t =  0 = T f  , T s t=O = Ts , ei j} t=O = [cgu /Ox]  + c ) u j / O x i ] / 2 ,  

criyl t=0 = KekkC)iy [ t=0 + 2G (ei7 - (1 /3 )  ekk~iy) I t :0  + flsKpO6ij - 

0 0 0 0 
-- ~OsKTst~ij + e2ctmOva [OVsi/Oxj + OVsj/Ox i - (2 /3 )  (OVsk/OXk) ~ij]" (3) 

The  asymptotic solution of problem (1)-(3) is constructed in the form 

U ( T ,  X, t) = Uback (X, l)  + W ( r ,  x ,  l ) ,  



<x, ,): ,s~ ,) + ,:>c, 0 + <,, ,) + .... <,) 

w(~, x, t) = E~ I) (r, x, t) + ~2~I/2) (3, x, t) + ... 

Here x, t are the slow variables, ~ ffi S(x,  t ) / e  is the fast variable, S(x ,  t) is the phase, U is the vector-function of 

the unknown quantities: 

U (r, x, t) = (m, vfi, vsi, p, ~i/, %,  Tf, T s, u i ) ,  i, i = 1, 2, 3 .  

The functions WO~(~, x, t) are 2/-r-periodic with a zero mean value in ~, so that the function Uback(X, t) is the slow 
background,  which is the mean of the solution U of the initial system of equations. Here U~ba~ck(X, t) and  
I4/'/)(~, x, t) are the C| in corresponding variables. 

Below, we consider for simplicity the case of identical background temperatures ( T~ ~ = T~s 0)) and zero 
velocities of motion of the solid and fluid phases (v~ O) ffi v~ O) ffi O, iffi l ,  2, 3). 

To construct the background solution Uback(X, t) in rood O(e 2) it is necessary to determine the function 

WO)(t, x, t). We substitute Eq. (4) into Eqs. (1)-(2). Having designated by A the symbol of the linearized operator 

A(t ,  x, O/Ot, Vx) of the initial system of equations against the background u(O)ck, we obtain 

(i/e) ̀ 4 (st, s,<, x, t) li~, ~) (r, x, 0 + o (I) = o. 

Hence, it follows that according to rood Oil) 

,4 ( s  t, s x, x,  t) w O) (~, x, 0 = 0 .  

Thus, the existence of a nonzero vector-function W ~  (r, x, t) is possible only when 

Det A (S t, S x, x, t) = O. (5) 

Consequently, we can present the function 14/l)(r, x, t) in the form of a product of a certain function u~l)(r,  x, t) 

and of the null vector H(x ,  t) of the matrix A: 

W (t) (~, x, t) = U (1) (r, x, t) H (x, t ) ,  (6) 

where A(St ,  Sx, x, t )H(x,  t) = O. 

The determinant of the matrix A(t,  x, -co, k) is 

~ 2  2 17/:.~ 
Del A (t, x, - co, k ) = ( l  -c t )5m4~4 .:~ pliqco [ o ( l  - ( 1  - c t )  m))  

in the case of a porous medium saturated with a liquid and 

2 2 17/ 2 
Det A (t, x, - co, k) -- (1 - a)5m 4 :::4 :~s Pgco (3RTg (l  - (l  - ,~) m)) 

in the case of a porous medium saturated with a gas. Here, -co and k denote the derivatives of St and Sx, 

respectively. 

Solving Eq. (5), we find the frequencies coi= coi(x, t, k) of the waves typical of lhe considered mathematical 
model. 

The even roots of the polynomial ,~s determine the frequencies of transverse waves of different polarization. 

The fourth-degree polynomial :~4 determines the frequencies of longitudinal (direct and back) waves of the 1st 
and 2nd kind. 

Finding the function UO)(r, x, t) is reduced to constructing a solution by the method of two scales and to 
solving the nonlinear evolutional Kortevega-De Vries-Burgers equation [9, l0 ]. 



The construction of the background solution is carried out by the substitution of Eq. (4) into Eqs. (1)-(2). 

The limiting linearized system of equations for a zero approximation of the background solution has a simple form: 

0 (m(~176 = O, 0 (am(O)p (0) + (1 - m(~176 = O, 

p x i = O ,  Oo 0 = 0 ,  Oe t = O ,  Ou t = O ,  

oo~~ / ot - ~i~ &KOp(~ / ot + c~/ >o~co~~ / ot = o, 

m (0) (I - a)(,o~O)Cli,O?~lO)/otq + (p(O) /p}O))op~O)/o t -  ~OliqT~lO)op(O)/o,) + 

+ x ( ~ o )  _ r  = o 

o r  

where 

(l - m(% (p~~176 + ~os~ ~ (0) / Ot)  + a m  (o) (p (aO)ca0~0)/Ot - 

liq ---- PliqO -- PO) -- ~Pliq 

p(=o) = p,,q o 0 - ~ (o(o) _ oo) - ~ ( ~ o )  _ r . o ) ) ,  p~o) = p .o  ( l  - 

_ ~ ,  ( j o )  _ Oo) - ~ ,  ( ~ o )  _ T o ) ) ,  o(O) = o(k~)/(3 (1 - (1 - a )  ,~(o))) _ p(O). 

One can easily see that any constant U~~ k ffi const can be taken as a zero approximation of the background 
solution. 

For a first approximation of the background solution (mod O(e)), we obtain a homogeneous hyperbolic 
system of equations: 

. (o) (o) (~). o (,,,o)p~o) + . , % ? > ) l o t  + v~ t., pf ,'f ~ = o,  

+ v .  ( ( ~ . , % ~  ~ + (1 - ~<o>) p~o)) . ,< ') ' j=o,  

- Vsi ) = 0 ,  

(~..~O)p~O) + (l - .~(o)) p~O)) a, ,~l) /a,  + ( l  - ( l  - a ) . , %  ap~ ' ) /o~ ,  - 

o lO~,~l)/oxj + (~) = o O e . > / O ,  - V 2  = O .  - , 



Oi" 

- -  Oi/fls KOp(I)/Ot +Oi/ ~~ i)/Ot = O, 

1" (o> ,) ( ;~176176  + m (~ (1 - a) (/gliq CliqOT~liq lo t  4 -  

: >  (, . )~i~  + : >  (, - o);~ + ~ ( ~ ' >  ~,'>)= o 

(1 - m (0)) (p~O)CsOT(sl>/ot- ((r~7)(O)ae~)/Ot + $%7~sO>oa(t)/Ot) + 

"4- am (0) ~o(O)cao~l) /ol  - ((7(0)/)0 (0)) ap(i)/Ol 4" ~a~sO)ocr(l)/ol) -- 

- (o r(0> - (1 - (1 - a)  m (0>) p(O)sii ) Ov~>/dxj - X (T~f 1) - T~s l)) = 0 .  

In the problem considered,  the Cauchy data (2) are mod O(e)equa l  to zero. Consequently,  this hyperbolic 
system has a unique zero solution U(b~)ck = 0. 

Here, we essentially used the requirement  that  the functions gO) are the functions with a zero mean  value 
with respect to 3. Therefore,  performing integration of the equations of the first approximation over the  period, we 
obtained a system of equations for U(b~)ck which is independent  of W (1). Thus,  perturbat ion of the equilibrium state 
did not  lead to a change in the background in the first approximation.  

Further,  for U(2)ck(X, t) (rood O(e2)) we obtain the following system of equations: 

. (o)  (o)  (2)x = ; O(nl(2>p~ O) 4- m(O>p~2))/Ot 4- V x t m  p, Vf ) 0 

0 (a (m(O)p (2) + m(2)p (0>) + ( 1 -  m(~ 2 ) -  ra(2)p~O))/Ot + 

+ Vx ((~,,,(o)/~o) + (i - m <~ p~o)) ~)) = O; 

2~ 
§ f 

o 
W (1) (W(vlfli- W(vls)i)dT = O; 

(am(O)p (0) + (1 - m (0)) p~O))Ov~2)/Ot_ Oal:)/Ox j + 

+ (1 (1 a) rr/(0)) Op(2)/OXi (m(0)) 2 (1 a)2 (v12) .(2)\ . . . . .  Vsi ) -- 

2~ 
- -  m 0 )  (1  - -  a ) / 2 ~  f 

o , $ , 1  

Oal:) / Ot - 5ijKOe~i) / Ot - 2GO ( e l : ) -  e~i)Sii/ 3) /  Ot - 



- cSijfls KOp(2)/Ot + 6ij ~~ 2)~at = 0 ;  

m (~ (I  a )  (o) 2) . (o) .  (o). a p ~ ) / a t  
-- (PliqCnqaT~liq/at + tP /Pl iq)  

-- tPliq#lO)ap(2)/Ot) "t" m (0) (1 -- a)p(O) aVliqi/axi(2) + z (T[li~q) _ T~s2)) + 

2n 

o i 

or  

2~ 
+ ( , : )  ( 1 -  = ) )2 /2 -  : I ~ v '  ) -  ./vls)12a~ = 0 ;  

0 

(1 - m (~ ( p ~ ~  (o~)(~ + ~osT~~ + 

+ < , . : )  ~:~ (<,co)l/o))a/~)/at + ~,,iq~, ~ - 

- (oF)'~ - (1 - (1 - ,,) ,,(0)) p(%~;) o~?)/o,~;n _ x (~2)  _ ~2))  : o .  (7) 

It is not difficult to see the presence of "sources" in this system, i.e., integral terms, that are mean values of 

nonlinear terms. For a linear problem the condition of zero means could have led to a homogeneous  system of 

equations that would have only a trivial solution. In the nonlinear case considered, even for zero Cauchy data for 

the function U(2)k(X, t), which result from initial data (3), system (7) has a nontrivial solution that explains the 
slow motion of the medium. 

We note tha t  all the  resul ts  ob t a ined  a re  easi ly  ex t ended  to the case of a mul t iphase  solut ion,  which makes 
it poss ible  to eva lua te  the  joint accumula t ing  effect of s imul t aneous ly  p ropaga t ing  longi tudinal  and  t r a n s v e r s e  waves .  

In  this case ,  in tegra t ion  should  be  car r ied  out over  the ent i re  set  of fast  var iab les  ~i, which c o r r e s p o n d  to wave  

f requenc ies  to i. 

As an  i l lustrat ion,  we will cons ide r  an app rox ima te  solut ion of the t rave l ing-wave  type  ( s t a t i ona ry )  of 

i n h o m o g e n e o u s  s y s t e m  of equat ions  (7). 

If in Eq. (6) for  W (1) we a s s u m e  U (l) to be equal to the initial  oscil lat ion ampl i tude  uo, then  it is not  difficult  

to ob ta in  an  e s t ima te  of the  b a c k g r o u n d  solut ion in o rder  of m a g n i t u d e  without  solving the evolut ional  equa t ion  for  

a m p l i t u d e  U (I). In this case,  the in tegra ls  in sys tem (7) will be e x p r e s s e d  in t e rms  of the coord ina tes  of the  null 

vector  H and  u0. 

T h e  subs t i tu t ion  of S = k x -  cot f rom Eq. (7) y ie lds  a s y s t e m  of o rd ina ry  di f ferent ia l  equa t ions  with 

co r r e spond ing  zero C a u c h y  data ;  this sy s t em is easily in tegra ted  numer ica l ly .  

F igure  1 p resen t s  the resul ts  of calculat ions of a o n e - d i m e n s i o n a l  p rob lem for  longi tudinal  waves  of the  1st 

and  2nd k ind  in a w a t e r - s a t u r a t e d  porous  m e d i u m  at the following values of d imens ion less  pa r ame te r s :  k = (0.001,  

0, 0) ,  a = 0, m = 0.2, Pliq = 1, Ps = 2.5, ~Oli q = 0.2, ~ l iq  = 0.1, qOs = 0.1, fls = 0.1, Cli q = 1, C s = l ,  Tli q = 1, T s = 1, G 

= 0.1, K =  1, p = 0.01, crij = 0.008 (i =13, vii = 0 (i ~ 13, Z = 0, u0 = l. Here ,  for the wave  of the  1st k ind  co = 0 .00244,  

H m  = 0.01937,  Hvliq I = 0.36747,  Hvs I = 0.14291; for  the wave of the 2rid kind w -- 0.00049,  H m = 0.24224,  Hvliq 1 

= 0.60184,  Hvs I = - 0 . 1 5 5 2 1 .  

As is seen  f rom Fig. 1, the change  in the background  values  of unknown funct ions  has  an explici t  n o n l i n e a r  

c h a r a c t e r  at  the initial  s tage  a n d  becomes  l inear  with the "onset"  of the S phase .  It is in te res t ing  to no te  t ha t  the  

net  effect  of a longi tudinal  wave of the I st kind (p ressure  wave) shows up most  s t rong ly  in the reduct ion  of p r e s s u r e  



U(2) . 

f 
0 ~ . 0 Z : : ~ J  a04 s -0.21 , . _ . . _ _ _ . . _  

-0.1 -0.41 ~ 

-a2 -0.8t 

Fig. 1. Distribution of the perturbations U(~)ck(S ) of background distributions 
as a result of the effect of a longitudinal wave of the 1st (a) and 2nd (b) kinds: 
a) 1, m-102; 2) p; 3) Vliql; 4) Vsl; 5) Tliq; 6) Ts; 7) all-102; 8) ell.101; 9) 

U 1. b) 1) m; 2) p; 3) I,'liql; 4) Vsl ; 5) Tliq'10-1; 6) Ts'101; 7) O'll ; 8) ett; 9) 
ul "10 -I .  

Q004 

in the liquid and leads to the onset of singly directed motions of the liquid and solid phases. A wave of the 2nd 
kind (rearrangement wave) leads to more substantial changes in porosity, stresses, deformation, and displacement, 
as well as to oppositely directed motion of the liquid and solid phases. It is interesting to note that in the model 
example considered the cooling of the liquid is determined by the predominant process of its expansion. 

Thus, allowance for the nonlinearity of oscillations in a saturated porous medium with propagating fast 
elastic waves makes it possible to explain the slow nonperiodic motion and obtain qualitative estimates of its 
parameters. 

N O T A T I O N  

x, space coordinate; t, time; m, porosity; x, permeability; a, volumetric fraction of bound liquid; p, density; 
Pii, tensor of stresses in fluid phase; 4i ,  tensor of true stresses in solid phase; crij, tensor of effective stresses; v, 

velocity vector; p, pressure; T, temperature; u, displacement vector; eq, tensor of deformations; K, modulus of 
volumetric elasticity; G, shear modulus;/~, compressibility factor; ~o, coefficient of thermal expansion; E, internal 
energy; v, viscosity; ,~, thermal conductivity; C, heat capacity; R, universal gas constant; Z, coefficient of interphase 

heat exchange; k, wave vector; co, frequency. Subscripts: s, solid phase; f, fluid phase; liq, liquid; g, gas; a,  bound 
liquid. 
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