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THE MECHANISM OF NONPERIODIC MOTION IN
POROUS MEDIA AS A RESULT OF THE
ACCUMULATING EFFECT OF NONLINEAR WAVES

A. M. Maksimov, E. V. Radkevich, and UDC 519.6+551.463
I. Ya. EdeI'man

We carried out a theoretical investigation of the nonlinear mechanism of nonperiodic motion in a saturated
porous medium under the prolonged action of elastic waves. Within the framework of a generalization of the
Frenkel— Biot— Nikolaevskii model, we suggest a technique for constructing a slow (background) solution
that takes into account the accumulating effect of fast nonlinear oscillations.

Numerous experimental data (for example, [1-3]), show that prolonged exposure of rocks saturated with
fluid to seismoacoustic vibrations leads to the accumulation of nonperiodic changes in them (acoustic flow of the
fluid, temperature rise, accumulation of deformations, etc.). A theoretical description of this nonlinear effect and
quantitative estimates can be made within the framework of a generalization [4, 5] of the classical
Frenkel—Biot—Nikolaevskii model [6] of the propagation of waves in saturated porous media. The use of the
method of multiscale expansions {7, 8] allows one, in the process of asymptotic investigation, to isolate different
types of motions: slow (background) averaged macromotion and fast (oscillating) micromotion. Naturally, there is
interaction between these two types: the propagation of fast (e.g., elastic) waves depends in many respects on the
parameters of the background motion and, on the other hand, the averaging of nonlinear oscillations leads to the
accumulation of changes in the parameters of the background motion. In the present work we propose a method
for constructing a background solution allowing one to evaluate the accumulating effect of nonlinear elastic
(longitudinal of the 1st and 2nd kinds and transverse) waves.

We will consider a viscoelastic deformable porous medium consisting of an elastic skeleton, a viscous fluid
bound by the skeleton surface, and a viscous fluid (weakly compressible liquid or perfect gas) phase.

Note that in contrast to the traditional investigation of a porous fluid for porous media, when Pjj= —pdij,
here we take shear stresses in the fluid into account:

Pij = - péu + Vi [aVﬁ/an + anj/axi - (2/3) (ank/axk) 6U] .

In a traditional linear consideration the corresponding small terms of equations are usually neglected;
therefore, the problem with allowance for the tensor of viscous stresses in a nonlinear statement was not considered
earlier. However, for analysis of the dynamics of porous media over long time periods, it is necessary to take into
account the accumulated contribution of weak nonlinear and dispersion effects.

The porous medium skeleton and the bound fluid form an effective viscoelastic solid phase that exhibits
the elastic properties of the skeleton and the viscous properties of the fluid. In this case the skeleton and bound
fluid have the same velocities, temperatures, and pressures.

We introduce into consideration the tensor of effective stresses:

oy=(~(~a)ym) (- Py,
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which is interpreted as the difference between the true phase stresses in the solid and fluid phases.

With allowance for viscoelastic properties, the rheological relation for the solid phase can be represented
as

+ amy, [dvg,/dx; + 9vg/ ax; — (2/3) (dvg/ dxg) 61 .

Next, we formulate a system of determining equations in dimensionless form. We introduce the following
dimensionless variables and parameters:

x'=x/x0, t'-—-t/lo, u'=u/x0, p =p/py, P'=P/K0, a’=o/Ko,
T =T/6y, B =PKy, ¢ =98y, K =K/Ky, G =G/Ky, v =v/v,
' 2 ' ' 22 ' 2
E =E/V0, v =V/(Kot0), A =A.90t0/(x°V0p0), C =C90/V0,
R'=R00/vg, x'=x60to/(v(2)p0), k’=kx0, w'=wto, where xq = vyl ,

1/2
lo =p0K/Vf , Vo = (Ko/po) .

Estimates of the values of the dimensionless parameters can be obtained using characteristic values of the
constants of rocks [61: Ko ~108~10° Pa; 6y ~102-10% K; pg~10% kg/m% B~10"19-10"% pa7};
¢ ~1070-1073K"Y; ¢ ~10% 3/ (kg-K); A ~10° W/ (m-K), v ~1075=1073 Pa-sec; x ~10715-107'2 m?. At these
parameter values we have: zo~10‘9-10‘° sec, v ~10% m/sec, x0~10"5-10"3 m, » ~1073-1075,
B ~1072-10% o' ~1073-10°, C" ~10% &' ~1077-10"%.

The dimensional analysis carried out made it possible to isolate the small dimensionless parameter
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e= )2 = i/ (Kto)' P = v/ )2

which represents a combination of the characteristic values of the viscosity of the fluid and the elasticity modulus,
density, and permeability of the medium.

In what follows the primes will be omitted. Proceeding from the estimates given above for the dimensionless
parameters, we further assume thatv = e%and A=A Omitting the tildes, we write the system of mass, momentum,
and energy conservation equations as (i, j=1, 2, 3)

9 ((1 —a)mpp)/ot + V, ((1 = a) mppy) =0
9 (amp, + (1 —m)pg)/ot+V, ((amp, + (1 —m)p)v)=0;

(I —a)ympgla/at+ (v, V) lv; — (1 —a) maP;/ox; + m’ {a- oz)2 (Vi — v) =03

(ampg + (1 — m)pg) 18701 + (v, Vol vy — do:/0x; — (1 — (1 — a)y m) P/ dx; —

- m’ a- a)2 (v —v) =05 du/dt—v,; =0;
(1)

- <ps6inaTs/at + ezamvaa (9vg/ 9x; + v/ dx; —



— (2/3) (9vgy/ 0x,) 8,)/ ot ; dey;/ 3t — (Ivg/ 3x; + O/ 9x)/2 =0
m(l —a)pi {878t + (v, VY1 E;=m (1 — a) P; v/ 9%; +
2 2 2 2
tm (Il —a)y ly— vl —x (T =T +eV, (m({1 ~a)}V,) T;
(1 —=m)ps (970t +{v;, VY E; + amp_ [8/3t + (v, V)] E, =
= (0 + (1 = (1 —a) m) P) dvy/ox; + x (Ty = Ty) +
2
+EV (1 = m)A, + aml) V, T, .
The rheological and thermodynamic relations have the form
Piiq = Piigo (1 + Biiq (P — Po) = Piiq (Tiiq — Thigo)) 5 Pg = P/ (RTy);
Pa = Piigo (1 = By (04’3 = 00) = 9o (Ts = Ty0)) s % = (M, Vigs V13) 5
ps = pso (1 = By @/3 — 00) = 9 (Ts ~ Tyg)) s ¥ = (Van¥ipo %) 5

Piq@Eliq = PuqCiqdTiiq + (P/Piiq) @Piiq — PuqTiiqdP 3 Eg = C4Ty s
psdE, = pCdT + dide; + o T do/3 ;
PadEy = poCadTy = T/ (3p,) dpg + P, Tydoy /3,
a =0/ (1= -a)ym)+ P;.

System (1)-(2) in its main part represents a hyperbolic, closed system of equations in unknown tensor
functions o;; and e;;, vector functions u, vg, and v, and scalar functions m, p, T, and T¥.

[t should be noted that consideration of the hyperbolic (in its main portion) system of equations and the
selection of the form for the asymptotic solution of this system predetermine the maximum number of real roots of
the dispersion equation that correspond to the frequencies of the waves in the model considered.

In what follows we shall limit ourselves to consideration of the Cauchy problem with the initial data

_ 0 0 0 0 _ 0
Uilpmo = Uy , Vgily= 0= "Vsi» Viili=0 = Vi mlyg=m, plig=pr ,

0 0 4] 0
0
aijl =0 — Kekké l, 0 + 2G (€ (1/3) ekkéu) ' =0 + ﬂst 6” -
— PKT8; + e'am’, [3vy/ax; + avi/ ax; — (2/3) (3v9/ 9x) 8,1 3)

The asymptotic solution of problem (1)-(3) is constructed in the form

U@, x, ) =Up (x5, ) + W(T, %, 1),



Upack (5 8) = U, (%, 0) + UL, (x, 1) + U2, (x, 1) + . 4

W xty=eWaxn+ewWP e 0+ .

Here x, ¢ are the slow variables, 7 = S(x, £)/¢ is the fast variable, S(x, ?) is the phase, U is the vector-function of
the unknown quantities:

U(t) X, t) = (mv vfp si P, o i

i eij, Tf, TS’ ui) , l,]= l, 2, 3.

The functions Wm(r, x, f) are 2r-periodic with a zero mean value in v, so that the function Upaci(x, ?) is the slow
background, which is the mean of the solution U of the initial system of equations. Here U(D &% 0 and
WO)(T, x, t) are the C”-functions in corresponding variables.

Below, we consider for simplicity the case of identical background temperatures ( Tfo) = 7§°)> and zero
velocities of motion of the solid and fluid phases (v(o) = v(o) =0,i=1,2,3.

To construct the background solution Uback(x, f) in mod O@h it is necessary to determine the function
W(l)(r, x, t). We substitute Eq. (4) into Egs. (1)-(2). Having designated by A the symbol of the linearized operator
A(t, x, 8/3t, Vx) of the initial system of equations against the background U(bg)ck, we obtain

(17) ASp Spx ) W @, x, ) + 0 (1) =0
Hence, it follows that according to mod O(1)
AS, S )W @ x0n=0
Thus, the existence of a nonzero vector-function W (z, x, ) is possible only when
Det A(S, S, %, 8) = 0. (5)

Consequently, we can present the function W“)(T, x, #) in the form of a product of a certain function uPa, x, 0
and of the null vector H(x, ?) of the matrix A:

W (t,x, 1) = P (T, x, ) H{x, 1), (6)

where A(S;, Sy, x, HH(x, ) = 0.
The determinant of the matrix A(f, x, —~w, k) is

DetA (L, x, —w, k) = (1 -~ a)’m*?, 2lpi0' /(301 ~ (1 — @) m))

in the case of a porous medium saturated with a liquid and

Det 4 (1, x, = w, k) = (1 - a)’m* 2, 2lpgw' /BRTE (1 = (1 ~ a) m))

in the case of a porous medium saturated with a gas. Here, —w and & denote the derivatives of §; and Sy,
respectively.

Solving Eq. (5), we find the frequencies w; = w;(x, t, k) of the waves typical of the considered mathematical
model.

The even roots of the polynomial #; determine the frequencies of transverse waves of different polarization.
The fourth-degree polynomial /% determines the frequencies of longitudinal (direct and back) waves of the Ist
and 2nd kind.

Finding the function U(l)('t, x, 1) is reduced to constructing a solution by the method of two scales and to
solving the nonlinear evolutional Kortevega—De Vries—Burgers equation [9, 10].



The construction of the background solution is carried out by the substitution of Eq. (4) into Egs. (1)-(2).
The limiting linearized system of equations for a zero approximation of the background solution has a simple form:

2 (mPM 01=0, 3@m®® + 1 -m®)p®) 0=
mPap®/0x, =0, 30 /ax,=0, aePsat=0, u®so=0,
003 /01 — &, fkap /0t + 8, p KT 73t = 0,
m® (1 - a) P CigdTR /81 + (00 /p8) aple /ot ~ gy Ti0p® /01 +

+x (7‘0) ™ =0

or
m® (1 - a) p(o)C o7 /ot + 4 (1 - 1) = 0
(A = M) P o1®/0t + 9,136/ 01) + am® (P01 /01 -
= @70 P00t + 9,106V 00 - (10 - 1) = 0
where

pl(iq) = Priqo (1 + Byq @ - Po) — Piq (T( = Tyiq0)) » P( )= pOy (R7‘§°’) ,
szo) = pliqo (1 = B, ©® - 99) — Pa (Tgo) - Ty)» p§0) =pgo (1 —
= B,0® —0g) =9, @D - Ty, P =dP/3 (1 - (1 = @) M) = p®.

One can easily see that any constant ug‘;)ck = const can be taken as a zero approximation of the background
solution.

For a first approximation of the background solution (mod Of(e)), we obtain a homogeneous hyperbolic
system of equations:

5 (m(l)pgo) + m® (1))/at +V, (m (0)p§0)v§l)) =0,
3 (@ (m(O)PEzl) mD (0)) +(1 - m(O))p(l) mD (0))/(” +
+ 9, (@@ + (1 = =) oM ) = 0,
p§°)av§i‘)/at + Op(l)/ax,» +m® (t —a) (vﬁ,') (])) =0,
(am(O)ng) + (1 — (O)) p(O)) ad (])/at +(-(l —a) m(o)) ap(‘)/ax,- -
- aagj‘)/axj _ (m(o))2 (- ) o] () _ (1)) =0,

acl) /a1 — [0V /ax, + v sax 12 =0, aldDsar - =0,



a0') /0t — 8,Koely) /ot — 2Ga (&) — e§08,./3)/at -
~ 8, Bkap /6t + 8, p KIS /ot =

0 © 0
m'? (1 - a) (o] )Chqa 70t + (0°/plQ) a0l /0t - 1Pthl(

(1)
Piiq) %Piiq iq 9P /38 +

liqg

0 0
+m¢ )(l - a) p( )avl(i'q),./axi +x (Tflq) Tgl)) =0

or
n® (1 - a) pc om0t + m@ (1 - @) NP s0x, + 2 (1 - Ty = 0
(1 = m®y Pc o170t — (&5 @ae /0t + 9T V36 /01y +
+ am® Q¢ 01701 - @@/ 368 /0t + 9, TP36™M /31y -

- @ = (1= (1 =&y m®) pO8 alrox; -y 1V - 1) = 0
In the problem considered, the Cauchy data (2) are mod O(e) equal to zero. Consequently, this hyperbolic
system has a unique zero solution U(back
Here, we essentially used the requu‘emem that the functions W are the functions with a zero mean value
with respect to 7. Therefore, performing integration of the equations of the first approximation over the period, we
obtained a system of equations for U(back which is independent of W, Thus, perturbation of the equilibrium state

did not lead to a change in the background in the first approximation.
Further, for U(bilk(x, t) (mod O(e%) we obtain the following system of equations:

d (m(2)p§0) + m(°)p§2))/ at+V, (m(O)p§0)vE2)) =0
2 (@ (@D + mP®) & (1 = m® p® _ @0 150 4
+ 9, (@ + (1 = mP) oM Py = o
pVavD /ot + apP/0x, + M (1 - @) P - VP +

pX; 3
+(1-ay2r [ W (W(v:), - W(v:),-) dr=0
! . :
@mOp + (1 = mD) oy 0D /01 — 90tD/0x; +
0 2 0),2 2 2 2
+ (1= (1 —a)ym®y pPsax, - (2 (1 = @) P = WPy -
(0) = oy, 1
m® (1 —ay2e [ W) W) - W)y dr =0
. : .
ae) 7ot — 10VD/ax, + v /0x,1/2 = 05 auP /ot = v = 0;

0037 /01 — 8,Kaeky) /ot — 2Ga (&) — ed,/3)/ ot -



~ 8, BKapP /ot + 8, p KT /ot =

sat + (070 30D /a1 -

0 0
m( ) ( a) (pl )ChanI( liq liq

iq

~ puqTheap /0ty + m@ (1 — @) )@ aviisax; + 5 (12 - T +
2
+ M1 -/ 1wl — w1 ar =0
0 iq s
or

m® (1 = a) pc,dTP /0t + M@ (1 = a) PP s0x; + 4 (TP - TP) +
(©) 2, 1) 1),2
+mO 1 -ap?/ f IWE,g - wf,sl dr =0
0

(1 = m®) Pco1P /01 - ) P06l /01 + 9, T35 /01 +
m® 160,010t - @70y 3P0t + 9y T ¥006P /1) -

- @ = = (1 =@y m® p%8) P sox, -y (1P - D) = 0. Q)

It is not difficult to see the presence of "sources” in this system, i.e., integral terms, that are mean values of
nonlinear terms. For a linear problem the condition of zero means could have led to a homogeneous system of
equations that would have only a trivial solution. In the nonlinear case considered, even for zero Cauchy data for
the function U$2 back(* £), which result from initial data (3), system (7) has a nontrivial solution that explains the
slow motion of the medium.

We note that all the results obtained are easily extended to the case of a multiphase solution, which makes
it possible to evaluate the joint accumulating effect of simultaneously propagating longitudinal and transverse waves.
In this case, integration should be carried out over the entire set of fast variables 7;, which correspond to wave
frequencies w;.

As an illustration, we will consider an approximate solution of the traveling-wave type (stationary) of
inhomogeneous system of equations (7).

If in Eq. (6) for W we assume UM to be equal to the initial oscillation amplitude ug, then it is not difficult
to obtain an estimate of the background solution in order of magnitude without solving the evolutional equation for
amplitude U™, In this case, the integrals in system (7) will be expressed in terms of the coordinates of the null
vector A and ug.

The substitution of S = kx — wt from Eq. (7) yields a system of ordinary differential equations with
corresponding zero Cauchy data; this system is easily integrated numerically.

Figure | presents the results of calculations of a one-dimensional problem for longitudinal waves of the 1st
and 2nd kind in a water-saturated porous medium at the following values of dimensionless parameters: & = (0.001,
0,0,a=0,m=0.2,pyqg=1, ps = 2.5, plig = 0.2, fiig = 0.1, ps = 0.1, B = 0.1, Cig=1,Cs=1,Tyiq=1, Tg=1,G
=0.1,K=1,p=0.01,0;=0.008 (i=5,0;=0 G = ), x=0, up= L. Here, for the wave of the Ist kind w = 0.00244,
H,, =0.01937, qul = (0.36747, Hy, = 0.14291; for the wave of the 2nd kind w = 0.00049, H,, = 0.24224, HVliql
=0.60184, H, | = —0.15521.

As is seen from Fig. 1, the change in the background values of unknown functions has an explicit nonlinear
character at the initial stage and becomes linear with the "onset” of the S phase. It is interesting to note that the
net effect of a longitudinal wave of the st kind (pressure wave) shows up most strongly in the reduction of pressure
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Fig. 1. Distribution of the perturbations U(b?ck(S) of background distributions
as a result of the effect of a longitudinal wave of the 1st (a) and 2nd (b) kinds:
a) 1, m-10% 2) p; 3) vigi; 9 vsi; 9 Tiigs 6) Ts; D oy, -10% 8) e5;-10'; 9)
uy. b 11) m; 2) p; 3) wiq1; 4 vs1; 5) T“q-IO“l; 6) Ts-IO'; Do 8 e N
u - 107,

in the liquid and leads to the onset of singly directed motions of the liquid and solid phases. A wave of the 2nd
kind (rearrangement wave) leads to more substantial changes in porosity, stresses, deformation, and displacement,
as well as to oppositely directed motion of the liquid and solid phases. It is interesting to note that in the model
example considered the cooling of the liquid is determined by the predominant process of its expansion.

Thus, allowance for the nonlinearity of oscillations in a saturated porous medium with propagating fast
elastic waves makes it possible to explain the slow nonperiodic motion and obtain qualitative estimates of its
parameters.

NOTATION

x, space coordinate; ¢, time; m, porosity; k, permeability; a, volumetric fraction of bound liquid; p, density;
Py, tensor of stresses in fluid phase; o‘?j, tensor of true stresses in solid phase; oy;, tensor of effective stresses; v,
velocity vector; p, pressure; T, temperature; u, displacement vector; ejj, tensor of deformations; K, modulus of
volumetric elasticity; G, shear modulus; 8, compressibility factor; ¢, coefficient of thermal expansion; E, internal
energy; v, viscosity; 4, thermal conductivity; C, heat capacity; R, universal gas constant; y, coefficient of interphase
heat exchange; k, wave vector; w, frequency. Subscripts: s, solid phase; f, fluid phase; liq, liquid; g, gas; «, bound
liquid.
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